Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559265

RESUMO

The microbiome is a complex community of microorganisms, encompassing prokaryotic (bacterial and archaeal), eukaryotic, and viral entities. This microbial ensemble plays a pivotal role in influencing the health and productivity of diverse ecosystems while shaping the web of life. However, many software suites developed to study microbiomes analyze only the prokaryotic community and provide limited to no support for viruses and microeukaryotes. Previously, we introduced the Viral Eukaryotic Bacterial Archaeal (VEBA) open-source software suite to address this critical gap in microbiome research by extending genome-resolved analysis beyond prokaryotes to encompass the understudied realms of eukaryotes and viruses. Here we present VEBA 2.0 with key updates including a comprehensive clustered microeukaryotic protein database, rapid genome/protein-level clustering, bioprospecting, non-coding/organelle gene modeling, genome-resolved taxonomic/pathway profiling, long-read support, and containerization. We demonstrate VEBA's versatile application through the analysis of diverse case studies including marine water, Siberian permafrost, and white-tailed deer lung tissues with the latter showcasing how to identify integrated viruses. VEBA represents a crucial advancement in microbiome research, offering a powerful and accessible platform that bridges the gap between genomics and biotechnological solutions.

2.
ISME J ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625060

RESUMO

High-elevation arid regions harbor microbial communities reliant on metabolic niches and flexibility to survive under biologically stressful conditions, including nutrient limitation that necessitates the utilization of atmospheric trace gases as electron donors. Geothermal springs present "oases" of microbial activity, diversity, and abundance by delivering water and substrates, including reduced gases. However, it is unknown whether these springs exhibit a gradient of effects, increasing the spatial reach of their impact on trace gas-oxidizing microbes in the surrounding soils. This study assessed whether proximity to Polloquere, a high-altitude geothermal spring in an Andean salt flat, alters the diversity and metabolic structure of nearby soil bacterial populations compared to the surrounding cold desert. Recovered DNA quantities and metagenomic analyses indicate that the spring represents an oasis for microbes in this challenging environment, supporting greater biomass with more diverse metabolic functions in proximal soils that declines sharply with radial distance from the spring. Despite the sharp decrease in biomass, potential rates of atmospheric hydrogen (H2) and carbon monoxide (CO) uptake increase away from the spring. Kinetic estimates suggest that this activity is due to high-affinity trace gas consumption, likely as a survival strategy for energy and/or carbon acquisition. These results demonstrate that Polloquere regulates a gradient of diverse microbial communities and metabolisms, culminating in increased activity of trace gas-oxidizers as the influence of the spring yields to that of the regional salt flat environment. This suggests that the spring holds local importance within the context of the broader salt flat and potentially represents a model ecosystem for other geothermal systems in high-altitude desert environments.

3.
Front Microbiol ; 14: 1268361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869653

RESUMO

Introduction: Anaerobic oxidation of methane (AOM) is hypothesized to occur through reverse hydrogenotrophic methanogenesis in marine sediments because sulfate reducers pull hydrogen concentrations so low that reverse hydrogenotrophic methanogenesis is exergonic. If true, hydrogenotrophic methanogenesis can theoretically co-occur with sulfate reduction if the organic matter is so labile that fermenters produce more hydrogen than sulfate reducers can consume, causing hydrogen concentrations to rise. Finding accumulation of biologically-produced methane in sulfate-containing organic-rich sediments would therefore support the theory that AOM occurs through reverse hydrogenotrophic methanogenesis since it would signal the absence of net AOM in the presence of sulfate. Methods: 16S rRNA gene libraries were compared to geochemistry and incubations in high depth-resolution sediment cores collected from organic-rich Cape Lookout Bight, North Carolina. Results: We found that methane began to accumulate while sulfate is still abundant (6-8 mM). Methane-cycling archaea ANME-1, Methanosarciniales, and Methanomicrobiales also increased at these depths. Incubations showed that methane production in the upper 16 cm in sulfate-rich sediments was biotic since it could be inhibited by 2-bromoethanosulfonoic acid (BES). Discussion: We conclude that methanogens mediate biological methane production in these organic-rich sediments at sulfate concentrations that inhibit methanogenesis in sediments with less labile organic matter, and that methane accumulation and growth of methanogens can occur under these conditions as well. Our data supports the theory that H2 concentrations, rather than the co-occurrence of sulfate and methane, control whether methanogenesis or AOM via reverse hydrogenotrophic methanogenesis occurs. We hypothesize that the high amount of labile organic matter at this site prevents AOM, allowing methane accumulation when sulfate is low but still present in mM concentrations.

4.
PLoS One ; 18(8): e0281277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37594978

RESUMO

Microbial communities in terrestrial geothermal systems often contain chemolithoautotrophs with well-characterized distributions and metabolic capabilities. However, the extent to which organic matter produced by these chemolithoautotrophs supports heterotrophs remains largely unknown. Here we compared the abundance and activity of peptidases and carbohydrate active enzymes (CAZymes) that are predicted to be extracellular identified in metagenomic assemblies from 63 springs in the Central American and the Andean convergent margin (Argentinian backarc of the Central Volcanic Zone), as well as the plume-influenced spreading center in Iceland. All assemblies contain two orders of magnitude more peptidases than CAZymes, suggesting that the microorganisms more often use proteins for their carbon and/or nitrogen acquisition instead of complex sugars. The CAZy families in highest abundance are GH23 and CBM50, and the most abundant peptidase families are M23 and C26, all four of which degrade peptidoglycan found in bacterial cells. This implies that the heterotrophic community relies on autochthonous dead cell biomass, rather than allochthonous plant matter, for organic material. Enzymes involved in the degradation of cyanobacterial- and algal-derived compounds are in lower abundance at every site, with volcanic sites having more enzymes degrading cyanobacterial compounds and non-volcanic sites having more enzymes degrading algal compounds. Activity assays showed that many of these enzyme classes are active in these samples. High temperature sites (> 80°C) had similar extracellular carbon-degrading enzymes regardless of their province, suggesting a less well-developed population of secondary consumers at these sites, possibly connected with the limited extent of the subsurface biosphere in these high temperature sites. We conclude that in < 80°C springs, chemolithoautotrophic production supports heterotrophs capable of degrading a wide range of organic compounds that do not vary by geological province, even though the taxonomic and respiratory repertoire of chemolithoautotrophs and heterotrophs differ greatly across these regions.

5.
Sci Adv ; 9(15): eadg2566, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37058557

RESUMO

Mantle-derived noble gases in volcanic gases are powerful tracers of terrestrial volatile evolution, as they contain mixtures of both primordial (from Earth's accretion) and secondary (e.g., radiogenic) isotope signals that characterize the composition of deep Earth. However, volcanic gases emitted through subaerial hydrothermal systems also contain contributions from shallow reservoirs (groundwater, crust, atmosphere). Deconvolving deep and shallow source signals is critical for robust interpretations of mantle-derived signals. Here, we use a novel dynamic mass spectrometry technique to measure argon, krypton, and xenon isotopes in volcanic gas with ultrahigh precision. Data from Iceland, Germany, United States (Yellowstone, Salton Sea), Costa Rica, and Chile show that subsurface isotope fractionation within hydrothermal systems is a globally pervasive and previously unrecognized process causing substantial nonradiogenic Ar-Kr-Xe isotope variations. Quantitatively accounting for this process is vital for accurately interpreting mantle-derived volatile (e.g., noble gas and nitrogen) signals, with profound implications for our understanding of terrestrial volatile evolution.

6.
Environ Microbiome ; 18(1): 33, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055869

RESUMO

This study describes the composition and potential metabolic adaptation of microbial communities in northeastern Siberia, a repository of the oldest permafrost in the Northern Hemisphere. Samples of contrasting depth (1.75 to 25.1 m below surface), age (from ~ 10 kyr to 1.1 Myr) and salinity (from low 0.1-0.2 ppt and brackish 0.3-1.3 ppt to saline 6.1 ppt) were collected from freshwater permafrost (FP) of borehole AL1_15 on the Alazeya River, and coastal brackish permafrost (BP) overlying marine permafrost (MP) of borehole CH1_17 on the East Siberian Sea coast. To avoid the limited view provided with culturing work, we used 16S rRNA gene sequencing to show that the biodiversity decreased dramatically with permafrost age. Nonmetric multidimensional scaling (NMDS) analysis placed the samples into three groups: FP and BP together (10-100 kyr old), MP (105-120 kyr old), and FP (> 900 kyr old). Younger FP/BP deposits were distinguished by the presence of Acidobacteriota, Bacteroidota, Chloroflexota_A, and Gemmatimonadota, older FP deposits had a higher proportion of Gammaproteobacteria, and older MP deposits had much more uncultured groups within Asgardarchaeota, Crenarchaeota, Chloroflexota, Patescibacteria, and unassigned archaea. The 60 recovered metagenome-assembled genomes and un-binned metagenomic assemblies suggested that despite the large taxonomic differences between samples, they all had a wide range of taxa capable of fermentation coupled to nitrate utilization, with the exception of sulfur reduction present only in old MP deposits.

7.
Microb Biotechnol ; 16(6): 1131-1173, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36786388

RESUMO

Practical experiments drive important scientific discoveries in biology, but theory-based research studies also contribute novel-sometimes paradigm-changing-findings. Here, we appraise the roles of theory-based approaches focusing on the experiment-dominated wet-biology research areas of microbial growth and survival, cell physiology, host-pathogen interactions, and competitive or symbiotic interactions. Additional examples relate to analyses of genome-sequence data, climate change and planetary health, habitability, and astrobiology. We assess the importance of thought at each step of the research process; the roles of natural philosophy, and inconsistencies in logic and language, as drivers of scientific progress; the value of thought experiments; the use and limitations of artificial intelligence technologies, including their potential for interdisciplinary and transdisciplinary research; and other instances when theory is the most-direct and most-scientifically robust route to scientific novelty including the development of techniques for practical experimentation or fieldwork. We highlight the intrinsic need for human engagement in scientific innovation, an issue pertinent to the ongoing controversy over papers authored using/authored by artificial intelligence (such as the large language model/chatbot ChatGPT). Other issues discussed are the way in which aspects of language can bias thinking towards the spatial rather than the temporal (and how this biased thinking can lead to skewed scientific terminology); receptivity to research that is non-mainstream; and the importance of theory-based science in education and epistemology. Whereas we briefly highlight classic works (those by Oakes Ames, Francis H.C. Crick and James D. Watson, Charles R. Darwin, Albert Einstein, James E. Lovelock, Lynn Margulis, Gilbert Ryle, Erwin R.J.A. Schrödinger, Alan M. Turing, and others), the focus is on microbiology studies that are more-recent, discussing these in the context of the scientific process and the types of scientific novelty that they represent. These include several studies carried out during the 2020 to 2022 lockdowns of the COVID-19 pandemic when access to research laboratories was disallowed (or limited). We interviewed the authors of some of the featured microbiology-related papers and-although we ourselves are involved in laboratory experiments and practical fieldwork-also drew from our own research experiences showing that such studies can not only produce new scientific findings but can also transcend barriers between disciplines, act counter to scientific reductionism, integrate biological data across different timescales and levels of complexity, and circumvent constraints imposed by practical techniques. In relation to urgent research needs, we believe that climate change and other global challenges may require approaches beyond the experiment.


Assuntos
Inteligência Artificial , COVID-19 , Humanos , Pandemias , Controle de Doenças Transmissíveis , Filosofia
8.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36631299

RESUMO

Marine deep subsurface sediment is often a microbial environment under energy-limited conditions. However, microbial life has been found to persist and even thrive in deep subsurface environments. The Mariana forearc represents an ideal location for determining how microbial life can withstand extreme conditions including pH 10-12.5 and depleted nutrients. The International Ocean Discovery Program Expedition 366 to the Mariana Convergent Margin sampled three serpentinizing seamounts located along the Mariana forearc chain with elevated concentrations of methane, hydrogen, and sulfide. Across all three seamount summits, the most abundant transcripts were for cellular maintenance such as cell wall and membrane repair, and the most abundant metabolic pathways were the Entner-Doudoroff pathway and tricarboxylic acid cycle. At flank samples, sulfur cycling involving taurine assimilation dominated the metatranscriptomes. The in situ activity of these pathways was supported by the detection of their metabolic intermediates. All samples had transcripts from all three domains of Bacteria, Archaea, and Eukarya, dominated by Burkholderiales, Deinococcales, and Pseudomonales, as well as the fungal group Opisthokonta. All samples contained transcripts for aerobic methane oxidation (pmoABC) and denitrification (nirKS). The Mariana forearc microbial communities show activity not only consistent with basic survival mechanisms, but also coupled metabolic reactions.


Assuntos
Bactérias , Água do Mar , Água do Mar/microbiologia , Bactérias/genética , Bactérias/metabolismo , Archaea/genética , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Filogenia
9.
ISME J ; 17(1): 140-150, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257972

RESUMO

Subducting oceanic crusts release fluids rich in biologically relevant compounds into the overriding plate, fueling subsurface chemolithoautotrophic ecosystems. To understand the impact of subsurface geochemistry on microbial communities, we collected fluid and sediments from 14 natural springs across a ~200 km transect across the Costa Rican convergent margin and performed shotgun metagenomics. The resulting 404 metagenome-assembled genomes (MAGs) cluster into geologically distinct regions based on MAG abundance patterns: outer forearc-only (25% of total relative abundance), forearc/arc-only (38% of total relative abundance), and delocalized (37% of total relative abundance) clusters. In the outer forearc, Thermodesulfovibrionia, Candidatus Bipolaricaulia, and Firmicutes have hydrogenotrophic sulfate reduction and Wood-Ljungdahl (WL) carbon fixation pathways. In the forearc/arc, Anaerolineae, Ca. Bipolaricaulia, and Thermodesulfovibrionia have sulfur oxidation, nitrogen cycling, microaerophilic respiration, and WL, while Aquificae have aerobic sulfur oxidation and reverse tricarboxylic acid carbon fixation pathway. Transformation-based canonical correspondence analysis shows that MAG distribution corresponds to concentrations of aluminum, iron, nickel, dissolved inorganic carbon, and phosphate. While delocalized MAGs appear surface-derived, the subsurface chemolithoautotrophic, metabolic, and taxonomic landscape varies by the availability of minerals/metals and volcanically derived inorganic carbon. However, the WL pathway persists across all samples, suggesting that this versatile, energy-efficient carbon fixation pathway helps shape convergent margin subsurface ecosystems.


Assuntos
Sedimentos Geológicos , Microbiota , Sedimentos Geológicos/química , Filogenia , Metagenômica/métodos , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Enxofre/metabolismo
10.
Front Microbiol ; 13: 998133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386678

RESUMO

Despite being one of the largest microbial ecosystems on Earth, many basic open questions remain about how life exists and thrives in the deep subsurface biosphere. Much of this ambiguity is due to the fact that it is exceedingly difficult and often prohibitively expensive to directly sample the deep subsurface, requiring elaborate drilling programs or access to deep mines. We propose a sampling approach which involves collection of a large suite of geological, geochemical, and biological data from numerous deeply-sourced seeps-including lower temperature sites-over large spatial scales. This enables research into interactions between the geosphere and the biosphere, expanding the classical local approach to regional or even planetary scales. Understanding the interplay between geology, geochemistry and biology on such scales is essential for building subsurface ecosystem models and extrapolating the ecological and biogeochemical roles of subsurface microbes beyond single site interpretations. This approach has been used successfully across the Central and South American Convergent Margins, and can be applied more broadly to other types of geological regions (i.e., rifting, intraplate volcanic, and hydrothermal settings). Working across geological spatial scales inherently encompasses broad temporal scales (e.g., millions of years of volatile cycling across a convergent margin), providing access to a framework for interpreting evolution and ecosystem functions through deep time and space. We propose that tectonic interactions are fundamental to maintaining planetary habitability through feedbacks that stabilize the ecosphere, and deep biosphere studies are fundamental to understanding geo-bio feedbacks on these processes on a global scale.

11.
Microbiol Resour Announc ; 11(6): e0020122, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575557

RESUMO

Ten distinct isolates from the genus Pseudomonas were isolated in culture. The genomes of these isolates were sequenced using the Illumina MiSeq platform and assembled in order to provide insight into the metabolic and carbon-degrading potential of bacteria residing in soils at high latitudes.

12.
Front Microbiol ; 13: 847563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369448

RESUMO

As marine sediments are buried, microbial communities transition from sulfate-reduction to methane-production after sulfate is depleted. When this biogenic methane diffuses into the overlying sulfate-rich sediments, it forms a sulfate-methane transition zone (SMTZ) because sulfate reducers deplete hydrogen concentrations and make hydrogenotrophic methanogenesis exergonic in the reverse direction, a process called the anaerobic oxidation of methane (AOM). Microbial participation in these processes is often inferred from geochemistry, genes, and gene expression changes with sediment depth, using sedimentation rates to convert depth to time. Less is known about how natural sediments transition through these geochemical states transition in real-time. We examined 16S rRNA gene amplicon libraries and metatranscriptomes in microcosms of anoxic sediment from the White Oak River estuary, NC, with three destructively sampled replicates with methane added (586-day incubations) and three re-sampled un-amended replicates (895-day incubations). Sulfate dropped to a low value (∼0.3 mM) on similar days for both experiments (312 and 320 days, respectively), followed by a peak in hydrogen, intermittent increases in methane-cycling archaea starting on days 375 and 362 (mostly Methanolinea spp. and Methanosaeta spp., and Methanococcoides sp. ANME-3), and a methane peak 1 month later. However, methane δ13C values only show net methanogenesis 6 months after methane-cycling archaea increase and 4 months after the methane peak, when sulfate is consistently below 0.1 mM and hydrogen increases to a stable 0.61 ± 0.13 nM (days 553-586, n = 9). Sulfate-reducing bacteria (mostly Desulfatiglans spp. and Desulfosarcina sp. SEEP-SRB1) increase in relative abundance only during this period of net methane production, suggesting syntrophy with methanogens in the absence of sulfate. The transition from sulfate reduction to methane production in marine sediments occurs through a prolonged period of methane-cycling by methanogens at low sulfate concentrations, and steady growth of sulfate reducers along with methanogens after sulfate is depleted.

14.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34799449

RESUMO

It is well established that mantle plumes are the main conduits for upwelling geochemically enriched material from Earth's deep interior. The fashion and extent to which lateral flow processes at shallow depths may disperse enriched mantle material far (>1,000 km) from vertical plume conduits, however, remain poorly constrained. Here, we report He and C isotope data from 65 hydrothermal fluids from the southern Central America Margin (CAM) which reveal strikingly high 3He/4He (up to 8.9RA) in low-temperature (≤50 °C) geothermal springs of central Panama that are not associated with active volcanism. Following radiogenic correction, these data imply a mantle source 3He/4He >10.3RA (and potentially up to 26RA, similar to Galápagos hotspot lavas) markedly greater than the upper mantle range (8 ± 1RA). Lava geochemistry (Pb isotopes, Nb/U, and Ce/Pb) and geophysical constraints show that high 3He/4He values in central Panama are likely derived from the infiltration of a Galápagos plume-like mantle through a slab window that opened ∼8 Mya. Two potential transport mechanisms can explain the connection between the Galápagos plume and the slab window: 1) sublithospheric transport of Galápagos plume material channeled by lithosphere thinning along the Panama Fracture Zone or 2) active upwelling of Galápagos plume material blown by a "mantle wind" toward the CAM. We present a model of global mantle flow that supports the second mechanism, whereby most of the eastward transport of Galápagos plume material occurs in the shallow asthenosphere. These findings underscore the potential for lateral mantle flow to transport mantle geochemical heterogeneities thousands of kilometers away from plume conduits.

15.
Front Microbiol ; 12: 702015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603228

RESUMO

Heterotrophic microorganisms in marine sediments produce extracellular enzymes to hydrolyze organic macromolecules, so their products can be transported inside the cell and used for energy and growth. Therefore, extracellular enzymes may mediate the fate of organic carbon in sediments. The Baltic Sea Basin is a primarily depositional environment with high potential for organic matter preservation. The potential activities of multiple organic carbon-degrading enzymes were measured in samples obtained by the International Ocean Discovery Program Expedition 347 from the Little Belt Strait, Denmark, core M0059C. Potential maximum hydrolysis rates (Vmax) were measured at depths down to 77.9mbsf for the following enzymes: alkaline phosphatase, ß-d-xylosidase, ß-d-cellobiohydrolase, N-acetyl-ß-d-glucosaminidase, ß-glucosidase, α-glucosidase, leucyl aminopeptidase, arginyl aminopeptidase, prolyl aminopeptidase, gingipain, and clostripain. Extracellular peptidase activities were detectable at depths shallower than 54.95mbsf, and alkaline phosphatase activity was detectable throughout the core, albeit against a relatively high activity in autoclaved sediments. ß-glucosidase activities were detected above 30mbsf; however, activities of other glycosyl hydrolases (ß-xylosidase, ß-cellobiohydrolase, N-acetyl-ß-glucosaminidase, and α-glucosidase) were generally indistinguishable from zero at all depths. These extracellular enzymes appear to be extremely stable: Among all enzymes, a median of 51.3% of enzyme activity was retained after autoclaving for an hour. We show that enzyme turnover times scale with the inverse of community metabolic rates, such that enzyme lifetimes in subsurface sediments, in which metabolic rates are very slow, are likely to be extraordinarily long. A back-of-the-envelope calculation suggests enzyme lifetimes are, at minimum, on the order of 230days, and may be substantially longer. These results lend empirical support to the hypothesis that a population of subsurface microbes persist by using extracellular enzymes to slowly metabolize old, highly degraded organic carbon.

16.
Appl Environ Microbiol ; 87(19): e0097221, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34288700

RESUMO

Permafrost microbes may be metabolically active in microscopic layers of liquid brines, even in ancient soil. Metagenomics can help discern whether permafrost microbes show adaptations to this environment. Thirty-three metagenome-assembled genomes (MAGs) were obtained from six depths (3.5 m to 20 m) of freshly cored permafrost from the Siberian Kolyma-Indigirka Lowland region. These soils have been continuously frozen for ∼20,000 to 1,000,000 years. Eight of these MAGs were ≥80% complete with <10% contamination and were taxonomically identified as Aminicenantes, Atribacteria, Chloroflexi, and Actinobacteria within bacteria and Thermoprofundales within archaea. MAGs from these taxa have been obtained previously from nonpermafrost environments and have been suggested to show adaptations to long-term energy starvation, but they have never been explored in ancient permafrost. The permafrost MAGs had greater proportions in the Clusters of Orthologous Groups (COGs) categories of energy production and conversion and carbohydrate transport and metabolism than did their nonpermafrost counterparts. They also contained genes for trehalose synthesis, thymine metabolism, mevalonate biosynthesis, and cellulose degradation, which were less prevalent in nonpermafrost genomes. Many of these genes are involved in membrane stabilization and osmotic stress responses, consistent with adaptation to the anoxic, high-ionic-strength, cold environments of permafrost brine films. Our results suggest that this ancient permafrost contains DNA of high enough quality to assemble MAGs from microorganisms with adaptations to survive long-term freezing in this extreme environment. IMPORTANCE Permafrost around the world is thawing rapidly. Many scientists from a variety of disciplines have shown the importance of understanding what will happen to our ecosystem, commerce, and climate when permafrost thaws. The fate of permafrost microorganisms is connected to these predicted rapid environmental changes. Studying ancient permafrost with culture-independent techniques can give a glimpse into how these microorganisms function under these extreme low-temperature and low-energy conditions. This will facilitate understanding how they will change with the environment. This study presents genomic data from this unique environment ∼20,000 to 1,000,000 years of age.


Assuntos
Metagenoma , Pergelissolo/microbiologia , Adaptação Fisiológica , Sibéria
17.
Microbiome ; 9(1): 110, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001281

RESUMO

BACKGROUND: Total DNA (intracellular, iDNA and extracellular, eDNA) from ancient permafrost records the mixed genetic repository of the past and present microbial populations through geological time. Given the exceptional preservation of eDNA under perennial frozen conditions, typical metagenomic sequencing of total DNA precludes the discrimination between fossil and living microorganisms in ancient cryogenic environments. DNA repair protocols were combined with high throughput sequencing (HTS) of separate iDNA and eDNA fraction to reconstruct metagenome-assembled genomes (MAGs) from ancient microbial DNA entrapped in Siberian coastal permafrost. RESULTS: Despite the severe DNA damage in ancient permafrost, the coupling of DNA repair and HTS resulted in a total of 52 MAGs from sediments across a chronosequence (26-120 kyr). These MAGs were compared with those derived from the same samples but without utilizing DNA repair protocols. The MAGs from the youngest stratum showed minimal DNA damage and thus likely originated from viable, active microbial species. Many MAGs from the older and deeper sediment appear related to past aerobic microbial populations that had died upon freezing. MAGs from anaerobic lineages, including Asgard archaea, however exhibited minimal DNA damage and likely represent extant living microorganisms that have become adapted to the cryogenic and anoxic environments. The integration of aspartic acid racemization modeling and metaproteomics further constrained the metabolic status of the living microbial populations. Collectively, combining DNA repair protocols with HTS unveiled the adaptive strategies of microbes to long-term survivability in ancient permafrost. CONCLUSIONS: Our results indicated that coupling of DNA repair protocols with simultaneous sequencing of iDNA and eDNA fractions enabled the assembly of MAGs from past and living microorganisms in ancient permafrost. The genomic reconstruction from the past and extant microbial populations expanded our understanding about the microbial successions and biogeochemical alterations from the past paleoenvironment to the present-day frozen state. Furthermore, we provided genomic insights into long-term survival mechanisms of microorganisms under cryogenic conditions through geological time. The combined strategies in this study can be extrapolated to examine other ancient non-permafrost environments and constrain the search for past and extant extraterrestrial life in permafrost and ice deposits on Mars. Video abstract.


Assuntos
Pergelissolo , Archaea/genética , Fósseis , Metagenoma , Metagenômica
18.
ISME J ; 15(11): 3159-3180, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33981000

RESUMO

Acidobacteriota are widespread and often abundant in marine sediments, yet their metabolic and ecological properties are poorly understood. Here, we examined metabolisms and distributions of Acidobacteriota in marine sediments of Svalbard by functional predictions from metagenome-assembled genomes (MAGs), amplicon sequencing of 16S rRNA and dissimilatory sulfite reductase (dsrB) genes and transcripts, and gene expression analyses of tetrathionate-amended microcosms. Acidobacteriota were the second most abundant dsrB-harboring (averaging 13%) phylum after Desulfobacterota in Svalbard sediments, and represented 4% of dsrB transcripts on average. Meta-analysis of dsrAB datasets also showed Acidobacteriota dsrAB sequences are prominent in marine sediments worldwide, averaging 15% of all sequences analysed, and represent most of the previously unclassified dsrAB in marine sediments. We propose two new Acidobacteriota genera, Candidatus Sulfomarinibacter (class Thermoanaerobaculia, "subdivision 23") and Ca. Polarisedimenticola ("subdivision 22"), with distinct genetic properties that may explain their distributions in biogeochemically distinct sediments. Ca. Sulfomarinibacter encode flexible respiratory routes, with potential for oxygen, nitrous oxide, metal-oxide, tetrathionate, sulfur and sulfite/sulfate respiration, and possibly sulfur disproportionation. Potential nutrients and energy include cellulose, proteins, cyanophycin, hydrogen, and acetate. A Ca. Polarisedimenticola MAG encodes various enzymes to degrade proteins, and to reduce oxygen, nitrate, sulfur/polysulfide and metal-oxides. 16S rRNA gene and transcript profiling of Svalbard sediments showed Ca. Sulfomarinibacter members were relatively abundant and transcriptionally active in sulfidic fjord sediments, while Ca. Polarisedimenticola members were more relatively abundant in metal-rich fjord sediments. Overall, we reveal various physiological features of uncultured marine Acidobacteriota that indicate fundamental roles in seafloor biogeochemical cycling.


Assuntos
Sedimentos Geológicos , Sulfito de Hidrogênio Redutase , Sulfito de Hidrogênio Redutase/genética , Filogenia , RNA Ribossômico 16S/genética , Enxofre
19.
Trends Microbiol ; 29(5): 394-404, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546975

RESUMO

DNA sequencing has led to an explosion in discovery of microbial phylogenetic novelty, especially that represented by uncultivated taxa, to which the traditional system of prokaryotic taxonomy has not adapted. A lack of expansion of the International Code of Nomenclature of Prokaryotes (ICNP, 'the Code') to effectively capture this information has created a 'wild west' situation where names are published or appear in popular reference databases without further verification or validation. The rapid propagation of variant and questionable naming methods has led to widespread confusion and undermines prior accomplishments. We exemplify inconsistencies that have arisen from this practice and endanger the interoperability of scientific findings. The immediate solution to this problem is to develop and adopt universal best practices that are accepted by expert researchers, major publishers, the International Committee on Systematics of Prokaryotes (ICSP), and international microbiological societies.


Assuntos
Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Genoma , Análise de Sequência de DNA , Adaptação Fisiológica , Bases de Dados Factuais
20.
Environ Microbiol Rep ; 13(2): 185-194, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33462984

RESUMO

ANME-1 archaea subsist on the very low energy of anaerobic oxidation of methane (AOM). Most marine sediments shift from net AOM in the sulfate methane transition zone (SMTZ) to methanogenesis in the methane zone (MZ) below it. In White Oak River estuarine sediments, ANME-1 comprised 99.5% of 16S rRNA genes from amplicons and 100% of 16S rRNA genes from metagenomes of the Methanomicrobia in the SMTZ and 99.9% and 98.3%, respectively, in the MZ. Each of the 16 ANME-1 OTUs (97% similarity) had peaks in the SMTZ that coincided with peaks of putative sulfate-reducing bacteria Desulfatiglans sp. and SEEP-SRB1. In the MZ, ANME-1, but none of the putative sulfate-reducing bacteria or cultured methanogens, increased with depth. Our meta-analysis of public data showed only ANME-1 expressed methanogenic genes during both net AOM and net methanogenesis in an enrichment culture. We conclude that ANME-1 perform AOM in the SMTZ and methanogenesis in the MZ of White Oak River sediments. This metabolic flexibility may expand habitable zones in extraterrestrial environments, since it enables greater energy yields in a fluctuating energetic landscape.


Assuntos
Archaea , Metano , Anaerobiose , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...